Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690984

RESUMO

This paper presents the development of a novel high-pressure/high-temperature reactor cell dedicated to the characterization of catalysts using synchrotron x-ray absorption spectroscopy under operando conditions. The design of the vitreous carbon reactor allows its use as a plug-flow reactor, monitoring catalyst samples in a powder form with a continuous gas flow at high-temperature (up to 1000 °C) and under high pressure (up to 1000 bar) conditions, depending on the gas environment. The high-pressure/high-temperature reactor cell incorporates an automated gas distribution system and offers the capability to operate in both transmission and fluorescence detection modes. The operando x-ray absorption spectroscopy results obtained on a bimetallic InCo catalyst during CO2 hydrogenation reaction at 300 °C and 50 bar are presented, replicating the conditions of a conventional microreactor. The complete setup is available for users and permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental (CRG-FAME) sciences and French Absorption spectroscopy beamline in Material and Environmental sciences at ultra-high dilution (FAME-UHD) beamlines (BM30 and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

2.
Small ; : e2309127, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554016

RESUMO

Conventional separation technologies for valuable commodities require substantial energy, accounting for 10%-15% of global consumption. Mixed-matrix membranes (MMMs) offer a promising solution by combining processable polymers with selective inorganic fillers. Here, the potential of using ordered microporous structured materials is demonstrated as MMM fillers. The use of ordered macroporous ZIF-67 in combination with the well-known 6FDA-DAM polymer leads to superior performance in the important separation of propylene from propane. The enhanced performance can be rationalized with the help of advanced microscopy, which demonstrates that the polymer is able to penetrate the macroporous network around which the MOF (Metal-Organic Framework) is synthesized, resulting in a much better interphase between the two components and the homogeneous distribution of the filler, even at high loadings.

3.
Angew Chem Int Ed Engl ; 63(10): e202318250, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38253820

RESUMO

A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.

4.
Angew Chem Int Ed Engl ; 63(7): e202316093, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129312

RESUMO

Aggregation of filler particles during the formation of mixed matrix membranes is difficult to avoid when filler loadings exceed a 10-15 wt %. Such agglomeration usually leads to poor membrane performance. In this work, using a ZIF-67 metal-organic framework (MOF) as filler along with surface modification of Ag4 tz4 to improve processability and selective olefin adsorption, we demonstrate that highly loaded with a very low agglomeration degree membranes can be synthesized displaying unmatched separation selectivity (39) for C3 H6 /C3 H8 mixtures and high permeability rates (99 Barrer), far surpassing previous reports in the literature. Through molecular dynamics simulation, the enhanced compatibility between ZIF-67 and polymer matrix with adding Ag4 tz4 was proven and the tendency in gas permeability and C3 H6 selectivity in the mixed matrix membranes (MMMs) were well explained. More importantly, the membrane showed a wide range of pressure and temperature resistance, together with remarkable long-term stability (>900 h). The modification method might help solve interface issues in MMMs and can be extended to the fabrication of other fillers to achieve high performance MMMs for gas separation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38079363

RESUMO

The selective hydrogenation of aldehydes and olefins plays a crucial role in the synthesis of various industrial products. Immobilizing noble metal catalysts on solid supports has been pursued to overcome the challenges associated with catalyst separation and recovery. In this study, we explore the use of metal-organic frameworks (MOFs) as supports for the immobilization of molecular ruthenium catalysts in the hydrogenation of olefins and aldehydes. We designed a mixed-linker MOF by incorporating the picolylamine moiety, which is a ligand known for its excellent catalytic activity. The ruthenium catalysts were prepared via a simple metal-ligand coordination process without the need for additional treatments. The resulting catalysts exhibit high catalytic activity and a uniform distribution of ruthenium sites on the MOF crystals. The choice of ruthenium precursor has a significant influence on the catalytic performance, with even lower metal content resulting in higher activity. The catalysts achieve high conversion rates and selectivities in the hydrogenation of various olefins. However, in the hydrogenation of aldehydes, due to the harsher conditions required, the formation of small nanoparticles is observed after the reaction. Overall, our findings highlight the potential of picolylamine-modified MOFs as effective supports for the development of highly active heterogeneous catalysts for selective hydrogenation reactions.

6.
J Am Chem Soc ; 145(46): 25109-25119, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947830

RESUMO

Zeolite-supported nickel (Ni) catalysts have been extensively studied for the dry reforming of methane (DRM). It is generally believed that prior to or during the reaction, Ni is reduced to a metallic state to act as the catalytic site. Here, we employed a ligand-protected synthesis method to achieve a high degree of Ni incorporation into the framework of the MFI zeolite. The incorporated Ni species retained their cationic nature during the DRM reaction carried out at 600 °C, exhibiting higher apparent catalytic activity and significantly greater catalytic stability in comparison to supported metallic Ni particles at the same loading. From theoretical and experimental evidence, we conclude that the incorporation of Ni into the zeolite framework leads to the formation of metal-oxygen (Niδ+-O(2-ξ)-) pairs, which serve as catalytic active sites, promoting the dissociation of C-H bonds in CH4 through a mechanism distinct from that of metallic Ni. The conversion of CH4 on cationic Ni single sites follows the CHx oxidation pathway, which is characterized by the rapid transformation of partial cracking intermediates CHx*, effectively inhibiting coke formation. The presence of the CHx oxidation pathway was experimentally validated by identifying the reaction intermediates. These new mechanistic insights elucidate the exceptional performance of the developed Ni-MFI catalyst and offer guidance for designing more efficient and stable Ni-based DRM catalysts.

7.
Acc Chem Res ; 56(23): 3492-3503, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37991494

RESUMO

ConspectusThirty years ago, George A. Olah proposed the concept of the methanol economy, where methanol replaces fossil fuels as a means of energy storage, ground transportation fuel, and raw material for the manufacture of other carbon-based products. Over the years, with rising global warming concerns, the concept has evolved. A special interest is devoted to the development of catalytic processes that allow the transformation of carbon dioxide, via methanol, into CO2 neutral liquid hydrocarbons. These products could replace the oil-based fuels currently used by combustion engines. The rapid depletion of such fuels would avoid a considerable amount of CO2 emissions during the current energy transition.Over the past decade, we have focused on different key processes that should allow for maximal atom efficiency and, therefore, minimal energy consumption in a field, CO2 valorization, that can easily become a zero-sum game. In this Account, we highlight the importance of catalyst design to overcome the process challenges in the production of liquid fuels from methanol. Additionally, progress in multifunctional catalysts able to directly convert, in one single reactor, CO2 to liquid fuels is also discussed in detail. This integrated option is of particular interest since it allows an important decrease in operational units while increasing throughput by converting, in situ, a thermodynamically limited intermediate.

8.
Angew Chem Int Ed Engl ; 62(48): e202305385, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37530435

RESUMO

Transition metal oxides (TMOs) were one of the first photocatalysts used to produce hydrogen from water using solar energy. Despite the emergence of many other genres of photocatalysts over the years, TMO photocatalysts remain dominant due to their easy synthesis and unique physicochemical properties. Various strategies have been developed to enhance the photocatalytic activity of TMOs, but the solar-to-hydrogen (STH) conversion efficiency of TMO photocatalysts is still very low (<2 %), which is far below the targeted STH of 10 % for commercial viability. This article provides a comprehensive analysis of several widely used strategies, including oxygen defects control, doping, establishing interfacial junctions, and phase-facet-morphology engineering, that have been adopted to improve TMO photocatalysts. By critically evaluating these strategies and providing a roadmap for future research directions, this article serves as a valuable resource for researchers, students, and professionals seeking to develop efficient energy materials for green energy solutions.

9.
iScience ; 26(8): 107389, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554439

RESUMO

Blue and green ammonia production have been proposed as low-carbon alternatives to emissions-intensive conventional ammonia production. Although much attention has been given to comparing these alternatives, it is still not clear which process has better environmental and economic performance. We present a techno-economic analysis and full life cycle assessment to compare the economics and environmental impacts of blue and green ammonia production. We address the importance of time horizon in climate change impact comparisons by employing the Technology Warming Potential, showing that methane leakage can exacerbate the climate change impacts of blue ammonia in short time horizons. We represent a constrained renewable electricity availability scenario by comparing the climate change impact mitigation efficiency per kWh of renewable electricity. Our work emphasizes the importance of maintaining low natural gas leakage for sustainability of blue ammonia, and the potential for technological advances to further reduce the environmental impacts of photovoltaics-based green ammonia.

10.
Angew Chem Int Ed Engl ; 62(40): e202311048, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581296

RESUMO

Metal encapsulation in zeolitic materials through one-pot hydrothermal synthesis (HTS) is an attractive technique to prepare zeolites with a high metal dispersion. Due to its simplicity and the excellent catalytic performance observed for several catalytic systems, this method has gained a great deal of attention over the last few years. While most studies apply synthetic methods involving different organic ligands to stabilize the metal under synthesis conditions, here we report the use of metallosiloxanes as an alternative metal precursor. Metallosiloxanes can be synthesized from simple and cost-affordable chemicals and, when used in combination with zeolite building blocks under standard synthesis conditions, lead to quantitative metal loading and high dispersion. Thanks to the structural analogy of siloxane with TEOS, the synthesis gel stabilizes by forming siloxane bridges that prevent metal precipitation and clustering. When focusing on Fe-encapsulation, we demonstrate that Fe-MFI zeolites obtained by this method exhibit high catalytic activity in the NH3 -mediated selective catalytic reduction (SCR) of NOx along with a good H2 O/SO2 tolerance. This synthetic approach opens a new synthetic route for the encapsulation of transition metals within zeolite structures.

11.
Chem Mater ; 35(2): 692-699, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37520114

RESUMO

Zeolitic imidazolate frameworks (ZIFs) have been profusely used as catalysts for inserting CO2 into organic epoxides (i.e., epichlorohydrin) through cycloaddition. Here, we demonstrate that these materials suffer from irreversible degradation by leaching. To prove this, we performed the reactions and analyzed the final reaction mixtures by elemental analysis and the resulting materials by different microscopies. We found that the difference in catalytic activity between three ZIF-67 and one ZIF-L catalysts was related to the rate at which the materials degraded. Particularly, the {100} facet leaches faster than the others, regardless of the material used. The catalytic activity strongly depended on the amount of leached elements in the liquid phase since these species are extremely active. Our work points to the instability of these materials under relevant reaction conditions and the necessity of additional treatments to improve their stability.

12.
ChemSusChem ; 16(19): e202300608, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37313791

RESUMO

The CO2 -to-aromatics process is a chemical reaction that converts carbon dioxide (CO2 ) into valuable petrochemical, i. e., aromatics (especially, benzene, toluene, and xylene) over the metal/zeolite bifunctional catalytic systems. These aromatics are used in producing plastics, fibers, and other industrial products, which are currently exclusively sourced from fossil-derived feedstocks. The significance of this process lies in its potential to mitigate climate change by reducing greenhouse gas emissions and simultaneously producing valuable chemicals. Consequently, these CO2 -derived aromatics can reduce the reliance on fossil fuels as a source of feedstocks, which can help to promote a more sustainable and circular economy. Owing to the existence of a wider straight channel favoring the aromatization process, zeolite ZSM-5 is extensively used to yield aromatics during CO2 hydrogenation over bifunctional (metal/zeolite) catalytic systems. To provide a better understanding of this unique property of zeolite ZSM-5, this work investigates the impact of particle size and hierarchy of the zeolite and how these govern the reaction performance and the overall selectivity. As a result, an improved understanding of the zeolite-catalyzed hydrocarbon conversion process has been obtained.

13.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350764

RESUMO

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

14.
Adv Mater ; 35(25): e2300296, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37045553

RESUMO

Membrane technology, regarded as an environmentally friendly and sustainable approach, offers great potential to address the large energy penalty associated with the energy-intensive propylene/propane separation. Quest for molecular sieving membranes for this important separation is of tremendous interest. Here, a fluorinated metal-organic framework (MOF) material, known as KAUST-7 (KAUST: King Abdullah University of Science and Technology) with well-defined narrow 1D channels that can effectively discriminate propylene from propane based on a size-sieving mechanism, is successfully incorporated into a polyimide matrix to fabricate molecular sieving mixed matrix membranes (MMMs). Markedly, the surface functionalization of KAUST-7 nanoparticles with carbene moieties affords the requisite interfacial compatibility, with minimal nonselective defects at polymer-filler interfaces, for the fabrication of a molecular sieving MMM. The optimal membrane with a high MOF loading (up to 45 wt.%) displays a propylene permeability of ≈95 barrer and a mixed propylene/propane selectivity of ≈20, far exceeding the state-of-the-art upper bound limits. Moreover, the resultant membrane exhibits robust structural stability under practical conditions, including high pressures (up to 8 bar) and temperatures (up to 100 °C). The observed outstanding performance attests to the importance of surface engineering for the preparation and plausible deployment of high-performance MMMs for industrial applications.

15.
Angew Chem Int Ed Engl ; 62(24): e202303124, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040129

RESUMO

Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.

16.
Small Methods ; 7(4): e2201413, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789569

RESUMO

Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.

17.
ACS Appl Mater Interfaces ; 15(4): 5218-5228, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688511

RESUMO

The valorization of CO2 to produce high-value chemicals, such as methanol and hydrocarbons, represents key technology in the future net-zero society. Herein, we report further investigation of a PdZn/ZrO2 + SAPO-34 catalyst for conversion of CO2 and H2 into propane, already presented in a previous work. The focus of this contribution is on the scale up of this catalyst. In particular, we explored the effect of mixing (1:1 mass ratio) and shaping the two catalyst functions into tablets and extrudates using an alumina binder. Their catalytic performance was correlated with structural and spectroscopic characteristics using methods such as FT-IR and X-ray absorption spectroscopy. The two scaled-up bifunctional catalysts demonstrated worse performance than a 1:1 mass physical mixture of the two individual components. Indeed, we demonstrated that the preparation negatively affects the element distribution. The physical mixture is featured by the presence of a PdZn alloy, as demonstrated by our previous work on this sample and high hydrocarbon selectivity among products. For both tablets and extrudates, the characterization showed Zn migration to produce Zn aluminates from the alumina binder phase upon reduction. Moreover, the extrudates showed a remarkable higher amount of Zn aluminates before the activation rather than the tablets. Comparing tablets and extrudates with the physical mixture, no PdZn alloy was observed after activation and only the extrudates showed the presence of metallic Pd. Due to the Zn migration, SAPO-34 poisoning and subsequent deactivation of the catalyst could not be excluded. These findings corroborated the catalytic results: Zn aluminate formation and Pd0 separation could be responsible for the decrease of the catalytic activity of the extrudates, featured by high methane selectivity and unconverted methanol, while tablets displayed reduced methanol conversion to hydrocarbons mainly attributed to the partial deactivation of the SAPO-34.

18.
Chem Rev ; 122(18): 14275-14345, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947790

RESUMO

Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.


Assuntos
Zeolitas , Carbono , Catálise
19.
Chempluschem ; 87(6): e202200177, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35695481

RESUMO

In order to empower a circular carbon economy for addressing global CO2 emissions, the production of carbon-neutral fuels is especially desired, since addressing the global fuel demand via this route has the potential to significantly mitigate carbon emissions. In this study, we report a multifunctional catalyst combination consisting of a potassium promoted iron catalyst (Fe-K) and platinum containing zeolite beta (Pt-beta) which produces an almost entirely paraffinic mixture (up to C10 hydrocarbons) via CO2 hydrogenation in one step. Here, the Fe catalyst is responsible for modified Fischer-Tropsch synthesis from CO2 while Pt-beta is instrumental in tuning the product distribution almost entirely towards paraffins (both linear and branched) presumably via a combination of cracking and hydrogenation. The optimal temperature of operation was estimated to be 325 °C for the production of higher paraffins (C5 -C10 ) with a selectivity of ca. 28 % at a CO2 conversion of ca. 31 %.

20.
Nature ; 606(7915): 706-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732759

RESUMO

To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...